Welcome to Luciano Iess's Homepage

On the left: the JUNO mission (NASA) was launched on 5 agosto 2011 and it will orbit around Jupiter till 2021 and beyond. Its main purposes are the study of the atmosphere and the interior structure of the planet. Centre: artist view of the Cassini and Huygens probes at Saturn. Right: Saturn almost at equinox, as seen from Cassini (ISS Cassini).

Messages

Abbreviations: 

  • SMS = Space Missions and Systems
  • AS = Space Environment 

 

Important info: The correct exam dates are found on Infostud!

 

New exam sessions:

I've added two additional exam sessions on 19 June and 13 July.

 

 

Homework 1

Text

Observable file

 

 

  

 

 

This web site will be the main tool for communicating with you. I will also use of Google Classroom. 

Lectures will be given in presence. Those of you who cannot attend due to health reasons related to COVID-19 need to inform me by email. I will send you the Zoom link and the access code to enter the classroom. This is the only valid reason to attend from remote (only for the duration of the quarantine).

 

Luciano Iess

Results of the 2022 Orbit Determination Challenge

 

Giulia Nejat 2 pt

Andrea Vittori 2 pt

Mariano Conti 1 pt

Paolo Pagnozzi 1 pt

Roberto Santori 1 pt

 

Congratulations to the winners and all participants, whether you succeeded or not!

 

 

Exams Calendar  [link not active] 

Results of SMS MCT [link not active] 

Results of AS MCT [link not active]

  

 

 

Challenge 2021

Winners

First place: Pasquale Tartaglia

Second place: Chiara Pazzelli, Ariele Zurria

Third place: Chiara Pozzi, Giuliano Vinci, Alessandro Beolchi

 

The Challenge is a valid replacement for HW1 for the students in green in this list.

  

Congratulations to all participants! We received many very good answers. I hope everyone learned something on OD and enjoyed solving the problem.  

Luciano Iess 

 

 

 

Homework 1

Results of HW1 

Color codes:

Green = pass

Red = fail

Yellow = pass, but with some errors. It is strongly advised to do the challenge, answering the first questions (1-2, TBD). The second hpmework must be a "full green".

 

Problem

Observable data file

Deadline: Sunday 11 April 23:59:59. The text and the observable file is also available on Google Classroom. Use Classroom to upload your solution (a pdf file) and working code. If you are not on Classroom, use email (to me and paolo.cappuccio@uniroma1.it). Be concise and go right to the point. A well done set of figures is worth a thousand words. 

 

Information regarding the SMS and AS courses:

 

We will use the Zoom platform, on my NEW personal virtual room.

To access it, use the following invitation and link: 

 

Luciano Iess is inviting you to a scheduled Zoom meeting:

Topic: Luciano Iess's Personal Meeting Room

Join Zoom Meeting:

https://uniroma1.zoom.us/j/8534489651?pwd=WEcxRWlGS0JUaG5Mb253L0NveHdvZz09

Meeting ID: 853 448 9651    

Passcode: 250498

 

You must enter the room with your FIRST NAME and LAST NAME. You will not be admitted to the virtual classroom with nicknames. 

 

 

 **** Space Missions and Systems 

 

- (5 March 2021) The Science Requirement Document of the JUICE mission is avalable in the Class Notes link (SMS, Supporting Material) filename:JUI-EST-SGS-RS-001_i2.3_SciRD.pdf 

 

Results of HW2 and students admitted to the exam in "easy mode" (no MCT) can be found here (corrected list)

 

Matlab codes for the coherent demodulator: version 1 (shown in class) and version 2

Challenge 2020 - Results

1st place: not awarded

2nd place: Fabiani, Gubernari

3rd place: Pallarés Chamorro, Di Muzio (+1 pt.)

 

The challenge is a valid replacement for HW1 for the following students:

Capocchiano, Di Francesca, Di Muzio, Maioli, Mattei, Mereu, Moretti, Paci, Silvestri, Sponsillo

Congratulations to all participants! Many of you did quite a good job. 

  

Follow the link on the left panel to get the instructions for the remote exam sessions. 

For detailed instructions you may also download this pdf document (last update 25/5).

  

MCT results are available here (24 April 2020)

  

**** Space Missions and Systems 2019/2020 - Download the Challenge here!

The Challenge is available also on Google Classroom. The solution and working codes must be uploaded on Google Classroom by Sunday 26 April 23:59 UTC. In case of problems with Google Classroom (and only in this case), send it by email to luciano.iess@uniroma1.it AND gael.cascioli@uniroma1.it.

First place: +3 pt at the final exam

Two second places: +2 pt at the final exam

Three third places: +1 pt at the final exam

You are all encouraged to try it! There is a lot to learn. The Challenge is a valid replacement for HW 1 for students who did not pass or take it. 

 

**** Space Missions and Systems 2019/2020 - Homework #1:

The results of Homework 1 can be found following this link (30/4/2020)  

Click here to download the test (zip file)

The solution (a pdf file) and the source code must be uploaded by Sunday 5 April 23:59:59 CEST  on Google Classroom. If you have troubles with Classroom (and only in this case), the solution may be emailed to luciano.iess@uniroma1.it AND gael.cascioli@uniroma1.it AND daniele.durante@uniroma1.it. NO EXCEPTIONS!

Suggestions and remarks: Be concise and go right to the point. Plots convey information very effectively. Including a working source code is mandatory

 

Important message for students of the Space Missions and Systems:

The link for all Google Meet classes is always the same:

https://meet.google.com/wsf-pevk-fzb

Please turn off your cameras and mute your microphones (unless you wish to ask a question). Monday's class will be again on Youtube.

The video of the exercise on Kalman filter and the Earth orbiter (19 March 2020) is available on Google Classroom for DOWNLOAD (most of you won't be able to play it directly)

https://drive.google.com/open?id=1Ooa9B57kjii7Zz6CtY5cUwo72dr3aojr&authuser=0

The video will NOT be uploaded on Youtube, at least for now.

The Matlab files are available in the Class Notes/Space Missions and Systems/Supporting Material folder.

 

Important information to all Space Environment and Space Missions and Systems students:

 

Following the suspension of all in-class teaching activities till 15 March, we will continue the courses remotely on my Youtube streaming channel. This will enable some progress during this emergency situation.

Classes will resume online Monday 9 March, with the usual schedule:

Space Missions and Systems:

Monday, Tuesday, Wednesday 10:00-12:00

Thursday: 12:00-14:00

Space Environment:

Monday: 12:00-13:00

Tuesday: 8:00-10:00

Thursday: 10:00-12:00

 

To attend the classes in streaming:

Click here to access my Youtube channel

(otherwise copy&paste the following link in your browser:

https://www.youtube.com/channel/UC03_ifjMXQt_eqvBYs3X4Kg?view_as=subscriber)

The videos are not immediately available for viewing after the streaming session is terminated. You'll have to wait about one hour grace time to be able to view it. 

 

To ask questions, please use the chat available on the main page (give some try beforehands).

Alternatively, for more elaborate questions, give me a skype call. I'll have skype active on my laptop. My skypeid is luciano_diaa1.

Please visit this website for updates.

This is all experimental. If you have suggestions on better ways to continue the course, do not hesitate to contact me.

Luciano Iess

 

STAGE AND THESIS - NEW OPPORTUNITIES (updated 8 May 2020) - See link on the left 

-------------------

Space Missions and Systems class 12 March 2020

Using the Matlab code and the concepts you learned during the course, answer the following questions:

1) Which observables are most sensitive to x_0?

2) Which observables are most sensitive to v_0?

3) How does the state accuracy (standatd deviation) vary with h? Make a plot or a table.

4) Try to change one of the model parameters (k_1,k_2,m). Does the filter converge? Why?

5) Implement the MVE in the Spring-Mass Matlab script.

6) How do the standard deviations of the estimated state variables change?

7) Try to simulate your own observed observables (you can find the code in the file “spring_main_batch.m”

8) Using only one type of observables at a time, what is the maximum level of noise that guarrantees convergence?

The spring-mass Matlab code has been uploaded in the folder "Class Notes"/"Space Missions and Systems"/"Supplementary Material".

The previous version is also available in the same folder. There the observable quantities are generated in the matlab code. You can play with the noise level.  

---------------------- 

 

NEW: Work and stage opportunities - see link on the left. (21/5/2019).

 

 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

 

*** Plumbing the depth of Jupiter's winds 

Here is the link to the recent paper on Nature and some of its echoes in the news:

Iess et al. "Measurement of Jupiter's asymmetric gravity field", Nature, 555, 220-222 (2018)   

Nature Editorial

Nature Research highlights 

 

International coverage

NASA web site 

Scientific American (really good) 

CNN 

New York Times 

Los Angeles Times 

Fox News 

Reuters 

America Space 

ABC News - MSN 

The Hindustan Times (India)

IFL Science 

WIRED 

Coverage in Italy

ANSA 

La Repubblica 

Le Scienze 

Il Tempo

ADNKronos

Sapienza University of Rome

 

----------------------------------------------------------------

 

*** Short course on Matlab:  Download the full zip file here 

  

 

Luciano Iess: "The Attraction of Gravity" - Jean Dominique Cassini Medal Lecture at the European Geosciences Union - Vienna, April 25, 2017. Video recording

 

 

*** New supporting material:

Matlab codes for batch and sequential estimation (spring-mass system) in Class Notes - Supporting Material

 

*** An interesting link: Cassini behind the scenes

  

**** Space Missions and Systems

Matlab code for the coherent demodulator

  

___________________________________________________________ 

 

 

For updated information you may follow me on Twitter (luciano_iess)

 

*** Seminars at Beijing Institute of Tracking and Telecommunications Technology (BITTT):

Seminar 1: Deep Space Navigation Systems: Where Do We Stand?

Seminar 2: The European Delta-DOR Correlator

Seminar 3: BepiColombo, the ESA Mission To Mercury; MORE: Geodesy, Geophysics, Navigation

Seminar 4 and 5: The Scientific Use of Deep Space Tracking Systems; Radio Science in Deep Space Missions

***Tour of Robledo's DNS facilities. The visit to the Robledo and Cebreros tracking complexes was an interesting and profitable experience for all of us. Follow the link to see some photos. 

__________

Frequently Asked Question (FAQ)

An Eye on Mimas