Interplanetary Navigation

Examples from the Cassini/Huygens Mission

Jeremy B. Jones
Cassini/Huygens Navigation Team Chief
Jet Propulsion Laboratory
Pasadena, California
Agenda

- Overview
 - Objectives
 - Functions
- Trajectory Design
 - Direct versus Indirect Trajectories
 - Flybys versus orbiters
- Estimation
 - General Techniques
 - Measurements
 - Models
 - Typical Results
- Control
 - General Techniques
 - Propulsion/Control Systems
 - Navigation Simulation
 - Typical Results
Overview

• Navigation Objective: Delivery instrument fields of view to the desired location subject to the constraints of the spacecraft and ground system design.

• Support the design of the reference trajectory
 • The reference trajectory provides a “road map” for the execution of the mission
 • Estimate the “state” at all times during the mission
 • “State” may include:
 • spacecraft state,
 • satellite ephemerides,
 • satellite masses,
 • model parameters
 • Control the mission trajectory
Task Phases

• Planning and Prediction
 • Planning the trajectory
 • Defining the navigation strategy
 • Prediction of the capabilities (Accuracy, propellant,…)

• Execution
 • Collecting the measurements
 • Processing the measurements and estimating the model parameters
 • Correcting the trajectory

• Reconstruction
 • After the fact estimating where the spacecraft has been and the associated model parameters
Trajectory Design

• Objective: Find a trajectory which meets the scientific objectives within the capability of the launch vehicle and the spacecraft.

• Considerations:

 • Launch Window - The duration of the time interval that launch can occur
 • Can vary from instaneous to hours
 • Cassini’s daily launch window varied from 5 minutes to 140 minutes

 • Launch Period - The number of days during which a launch can occur
 • Cassini’s launch period for the primary mission was about 1 month.

 • Launch Opportunities - The number of available launch periods
 • Cassini identified 3 separate launch periods. Significant variations in the fundamental trajectory for different launch opportunities
Trajectory Design (Continued)

• Direct versus Gravity Assist Trajectories

 • Direct trajectories proceed from launch to their target with only propulsive maneuvers to modify the flight path

 • Minimizes the transfer time (cost) from launch to the target.

 • Gravity assist trajectories use the “sling shot” effect to change (increase or decrease) the orbital energy and inclination.

 • Maximizes the payload capability at the expense of time.

 • Cassini used two Venus flybys, one Earth flyby and one Saturn flyby to increase the orbital energy by 21 km2/sec2, but took 6.7 years to reach Saturn

 • Voyagers 1 & 2 used a direct trajectory that took about 4.1 to reach Jupiter

• Low Thrust Trajectories

 • Use low thrust - high impulse to decrease transfer time and/or increase payload
B-Plane
Flyby Geometry

- Inbound \(v \) infinity
- Turn angle = 60 degrees
- Delta \(v \)
- Outbound \(v \) infinity
- Flyby Hyperbola
- Flyby Body

2/26/07
Gravity Assist

Changing an orbit parameters without propellant

\[V_p = "Planet" _ Velocity \]
\[V^- = Spacecraft _ velocity _ before _ the _ flyby \]
\[V^-_\infty = Asymptotic _ velocity _ before _ the _ flyby \]
\[V^+ = Asymptotic _ velocity _ after _ the _ flyby \]
\[V^+ = Spacecraft _ velocity _ after _ the _ flyby \]
\[\delta = Turn _ angle _ during _ the _ flyby \]
\[\Delta V = velocity _ change \]

\[\Delta V = 2V_{\infty} \sin(\delta/2) \]
\[\sin(\delta/2) = \frac{1}{e} \]
\[e = 1 + \frac{r_p V^2_{\infty}}{\mu} \]

Question: Where did the energy change come from?
Cassini Interplanetary Trajectory

VENUS FLYBY
26 APR 1998

VENUS FLYBY
24 JUN 1999

DEEP SPACE MANEUVER
3 DEC 1998

JUPITER FLYBY
30 DEC 2000

LAUNCH
15 OCT 1997

EARTH FLYBY
18 AUG 1999

 Orbit of Jupiter

SATURN ARRIVAL
1 JUL 2004

Phoebe
11 JUN 2004